谢尔宾斯基地毯是什么?
的有关信息介绍如下:谢尔宾斯基地毯是什么?
谢尔宾斯基地毯是由瓦茨瓦夫·谢尔宾斯基于1916年提出的一种分形,是自相似集的一种。它的豪斯多夫维是 log 8/log 3 ≈ 1.8928。门格海绵是它在三维空间中的推广。
谢尔宾斯基地毯的构造与谢尔宾斯基三角形相似,区别仅在于谢尔宾斯基地毯是以正方形而非等边三角形为基础的。将一个实心正方形划分为的9个小正方形,去掉中间的小正方形,再对余下的小正方形重复这一操作便能得到谢尔宾斯基地毯。
谢尔宾斯基地毯是数学家谢尔宾斯基提出的一个分形图形. 谢尔宾斯基地毯和谢尔宾斯基三角形基本类似, 不同之处在于谢尔宾斯基地毯采用的是正方形进行分形构造, 而谢尔宾斯基三角形采用的等边三角形进行分形构造. 目录1简介2构造1简介编辑谢尔宾斯基地毯是由瓦茨瓦夫·谢尔宾斯基于1916年提出的一种分形,是自相似集的一种。它的豪斯多夫维是 log 8/log 3 ≈ 1.8928。门格海绵是它在三维空间中的推广。2构造编辑谢尔宾斯基地毯的构造与谢尔宾斯基三角形相似,区别仅在于谢尔宾斯基地毯是以正方形而非等边三角形为基础的。将一个实心正方形划分为的9个小正方形,去掉中间的小正方形,再对余下的小正方形重复这一操作便能得到谢尔宾斯基地毯。如下图谢尔宾斯基地毯可以由以下计算机程序构造: int isSierpinskiCarpetPixelFilled(int x,int y,int width,int height){// base caseif (x
谢尔宾斯基地毯是由瓦茨瓦夫·谢尔宾斯基于1916年提出的一种分形,是自相似集的一种。它的豪斯多夫维是 log 8/log 3 ≈ 1.8928。门格海绵是它在三维空间中的推广。
谢尔宾斯基地毯是由瓦茨瓦夫·谢尔宾斯基于1916年提出的一种分形,是自相似集的一种。它的豪斯多夫维是 log 8/log 3 ≈ 1.8928。门格海绵是它在三维空间中的推广。谢尔宾斯基地毯的构造与谢尔宾斯基三角形相似,区别仅在于谢尔宾斯基地毯是以正方形而非等边三角形为基础的。将一个实心正方形划分为的9个小正方形,去掉中间的小正方形,再对余下的小正方形重复这一操作便能得到谢尔宾斯基地毯。
百度百科那里有,很详细的。
尔宾斯基地毯的构造与谢尔宾斯基三角形相似,区别仅在于谢尔宾斯基地毯是以正方形而非等边三角形为基础的。将一个实心正方形划分为的9个小正方形,去掉中间的小正方形,再对余下的小正方形重复这一操作便能得到谢尔宾斯基地毯。
周长:a(3/2)^n 面积:s(3/4)^n 周长可以无限长,面积趋于0.