您的位置首页百科问答

全集和真子集的区别?

全集和真子集的区别?

的有关信息介绍如下:

全集和真子集的区别?

子集与真子集的区别是包含的范围不同。

1、子集是一个集合中的全部元素是另一个集合中的元素,有可能与另一个集合相等。

例如:设全集I为{1, 2, 3},则它的子集可以是{1}、{2}、{3}、{1, 2}、{1, 3}、{2, 3}、{1, 2, 3}、∅。

2、真子集是一个集合中的元素全部是另一个集合中的元素,但不存在相等。

设全集I为{1, 2, 3},则它的真子集为{1}、{2}、{3}、{1, 2}、{1, 3}、{2, 3}、∅。

扩展资料:

设S,T是两个集合,如果S的所有元素都属于T ,即

则称S是T的子集,记为

。显然,对任何集合S ,都有

。其中,符号

读作包含于,表示该符号左边的集合中的元素全部是该符号右边集合的元素。

如果S是T的一个子集,即

,但在T中存在一个元素x不属于S ,即

,则称S是T的一个真子集。

集合在数学领域具有无可比拟的特殊重要性。集合论的基础是由德国数学家康托尔在19世纪70年代奠定的,经过一大批科学家半个世纪的努力,到20世纪20年代已确立了其在现代数学理论体系中的基础地位,可以说,现代数学各个分支的几乎所有成果都构筑在严格的集合理论上。

真子集和子集的区别如下

1、定义不同子集是包括本身的元素的集合;真子集是除元素本身的元素的集合。

2、范围不同子集:集合A范围大于或等于集合B,B是A的子集。真子集:集合A范围比B大,B是A的真子集。

3、元素不同子集就是一个集合中的元素,全部都是另一个集合中的元素,有可能与另一个集合相等。

真子集就是一个集合中的元素,全部是另一个集合中的元素,但不存在相等。